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ABSTRACT

The cortical folding patterns are very different from one indi-

vidual to another. Here we try to find folding patterns auto-

matically using large-scale datasets by non-supervised clus-

tering analysis. The sulci of each brain are detected and iden-

tified using the brainVISA open software. The 3D moment in-

variants are calculated and used as the shape descriptors of the

sulci identified. A partial clustering algorithm using bootstrap

sampling and bagging (PCBB) is devised for cortical pattern

mining. Partial clusters are found using a modified hierar-

chical clustering method constrained by an objective func-

tion which looks for the most compact and dissimilar clusters.

Bagging is used to increase stability. Experiments on simu-

lated and real datasets are used to demonstrate the strength

and stability of this algorithm compared to other standard ap-

proaches. Some cortical patterns are found using our method.

In particular, the patterns found for the left cingulate sulcus

are consistent with the patterns described in the atlas of Ono.

Index Terms— clustering, patterns, sulcus, morphometry

1. INTRODUCTION

The most striking feature when we look at the brain is how

convoluted its surface is. Not like other organ such as the

heart and the kidney, the cerebral cortex is full of folds, the

larger and more stable ones are called the sulci. The cortex

folding pattern of each individual is somehow consistent yet

very different [1]. A naming system has been developed to

name the sulci and the gyri of the brain, but to take one indi-

vidual brain and try to label the sulci is a very difficult task,

even for experienced anatomist, due to the variability of the

folding patterns.

Whether these individual differences in folding patterns

are related to differences in various skills and functional ca-

pabilities is largely unknown. The most detailed description

of the sulcus variability has been proposed in the atlas of Ono

[2]. This atlas is based on twenty different brains. For each

sulcus, the authors propose a list of possible patterns and their

frequencies. Our goal is to do the same type of cortical pat-

tern analysis, automatically and on a large scale, with the aid

of computers.

Clustering is traditionally used for exploratory data anal-

ysis. The data points are assigned to different clusters, such

that the members of the same cluster are as similar as pos-

sible, while members of different clusters are as different as

possible [3]. We designed a Partial hierarchical Clustering

method using Bootstrap and Bagging (PCBB), to mine for the

patterns. Simulated datasets are used to compare the PCBB

algorithm with k-medoid and model-based algorithms, real

datasets are used to validate the quality and stability of this

algorithm. Some cortical patterns found by the PCBB algo-

rithm are presented.

2. PCBB ALGORITHM

The 3D moment invariants are used as the shape descriptors

of the cortical folds. Some investigations were made to ensure

that the set of moment invariants used are good shape descrip-

tors [4, 5]. Two aspects were verified. First, the moment in-

variants vary smoothly in the shape space of the cortical sulci.

Second, the moment invariants of different sulci are well sep-

arated from each other. The sulci of the brains are detected

and labelled automatically by brainVISA software [6]. The

3D moment invariants of each sulcus is then calculated and

used as input to the PCBB clustering algorithm. The steps of

the PCBB algorithm are described below.

Step 1: Agglomerative hierarchical clustering is per-

formed [7, 5]; the agglomeration process is guided by an

objective function:

R =
Σ compactness of the clusters formed

Σ distance among the clusters formed
(1)

In each step of the agglomeration process, R is calculated.

The p-value of the clusters formed at each step is then esti-

mated by a parametric sampling process [8]. Simulated distri-

butions are generated using the covariance matrix of the real

data. The same clustering process is applied to these simu-
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Fig. 1. The first column shows the boxplots of the distance of the two closest cluster centres found by the algorithm to the real centres. (In
the box plot, within the box is the data from the first to the third quartile, the dark line inside the box represents the median. Below the box
shows the line of the minimum, above the box the line of the maximum, the outliers are shown as dots.) The x-axis shows the eight simulated
datasets accumulated across the pairs of sulci, with percentages of noise from 50 to 400 percents. The results of the PCBB method is shown
on the first row, the results of GMM without noise correction are shown on the second row, the results of GMM with noise correction are
shown on the third row, and the results of k-medoid are shown on the last row. The second column shows the histogram of the distributions of
the number of centres by the three algorithms, the third column shows the boxplot of the number of centres for the eight different datasets.

lated datasets and p-value is estimated by counting the num-

ber of times the simulated data have a better R score than the

real data. Finally the clusters with the best p-value are chosen

as the salient points for the next step of the algorithm.

The goal of this step is to estimate the number of clus-

ters and their size automatically. Notice that the clustering is

”partial”, not all data points are assigned to clusters. The goal

here is to extract the most interesting sample points that might

contain strong and significant patterns. We are not trying to

assign each point to a pattern. Note also that the p-values es-

timated here are only used in the ranking system to pick out

the most interesting clusters; they are not used to perform sta-

tistical tests.

Step 2: The process described in step 1 is performed

many times on the bootstrap datasets of the original data. A

repertoire of salient points is identified to form a new dataset.

A simple K-medoid algorithm (the number of clusters being

estimated by the standard PAM criterion) is then used to find

the final clusters [7]. This step is using the idea of bagging [3];

the goal is to overcome the instability of the clusters found in

the first step. The assumption is that the first step of the clus-

tering on the bootstrap samples gives the strongest clusters

and eliminates most of the noise. So in this second step a rel-

atively simple clustering algorithm is sufficient to identify the

final clusters.

3. RESULTS

3.1. The experiments on simulated datasets: comparison
of algorithms

To evaluate the performance of the PCBB algorithm, we per-

form some experiments on simulated datasets. The proce-

dure and results are presented below. The dataset we use as

a model for generating the simulated dataset is a real dataset

made up of 36 brains, where each sulcus has been reliably la-

belled manually by a neuroanatomist. This dataset is used to

train the sulcus recognition system of brainVISA. We chose

the moment invariant data of the ten biggest sulci of each

hemisphere for further analysis. To generate the simulated

dataset to evaluate performance, we generated datasets using

the mean and covariance matrix of any pair of the ten sulci.

The simulated datasets are generated as follows: take the

mean and covariance matrix of any pair of sulci, generate a

new dataset using these same parameters. This gives a dataset
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with two known clusters. Then a series of noisy datasets

are generated by adding 50, 100, 150, 200, 250, 300, 350 and

400% of noise to the new dataset. The noise added follows

a Poisson distribution, within the min and max value of the

original dataset in their respective dimensions. The mean and

covariance matrix of the real sulci are used to keep the simu-

lated data close to the distribution of the real data.

K-medoid-style clustering algorithm, the Gaussian mix-

ture modelling algorithm and the PCBB algorithm are run on

these simulated datasets. The results are evaluated in terms

of the number of clusters found and how far are the cluster

centres found from the real centres.

K-medoid is a variant of the k-means algorithm that uses

the optimal representative sample (medoid) of its cluster. It is

considered more robust with respect to outliers than k-means

[7]. The standard PAM criterion is used to find the optimal

number of clusters [7].

The Gaussian mixture model-based (GMM) cluster-

ing involves first fitting a mixture model, usually by the

expectation-maximization (EM) algorithm, and then the pos-

terior probability of each mixture component is computed

given a data point [3]. Some success has been shown us-

ing the Bayesian Information Criterion (BIC) to choose the

right number of components. However, in general, equating

a component of GMM with a cluster is questionable [9]. In

our experiments, we use the Mclust toolbox from R to run

the GMM algorithm [10, 11]. Mclust is a state-of-the-art

mixture-model-based clustering tool. We did two GMM runs

for each dataset. The first run allows the algorithm to opti-

mally select the structure of the covariance matrices using the

standard BIC criterion [3], but without the initialization of

the proportion of noise as a prior. In the second run the real

proportion of noise in the dataset is given as a prior to the

algorithm.

Two comparisons are made to access the quality of the

clustering. First, the distance of the clusters centres found to

the real centres are measured. When there are more cluster

centres found by the algorithm than the real centres, only the

two clusters closest to the real centres are taken into consid-

eration. Second, the numbers of cluster centres found by the

algorithm are compared for each simulated dataset. The result

is shown in Fig. 1.

Results show that the PCBB algorithm is comparable to

k-medoid and to the GMM algorithm in terms of locating the

centres of clusters. However, in terms of estimating the num-

ber of clusters, PCBB is a lot more accurate and stable than

the other algorithms, with increasing number of noise in the

data. Feeding the GMM a percentage of noise during initial-

ization does not seem to help the performance. The result

shows that PCBB is more robust than GMM and k-medoid

for the particular problem of finding cortical patterns.

Fig. 2. The top-left image shows the salient points found with 100
bootstrap samples. The top-right image shows the final cluster cen-
tres found PCBB. The X and Y-axis are the first and second dimen-
sions of the PCA. The bottom image shows the shapes of the cingu-
late sulcus of the three corresponding clusters (from left to right in
the PCA).

3.2. The experiments on real datasets

The clustering experiment is run on the 36 brain dataset used

for generating the simulated data. The clusters found for one

of the sulci with the strongest patterns can be observed in Fig-

ure 2. Here we observe the forms of the patterns found. The

first cluster has a pattern with an anterior interruption, the sec-

ond cluster has a pattern with a posterior interruption, and the

third cluster appears to be continuous. These patterns found

are consistent with those described in the atlas of Ono, which

stated that around 60% of the instances of the cingulated sul-

cus have no interruption, around 24% have two segments with

a posterior interruption or an anterior interruption, and around

16% are divided into three segments. It should be noted that

the size of the database used prevents the detection of rare pat-

terns. Therefore, larger and more comprehensive databases

will be required to achieve a more exhaustive pattern search.

Next the PCBB algorithm is performed on two other real

datasets. Moment invariant data of the left cingulate sulcus

is used like above. The clusters found are shown in Figure 3.

Here two large real datasets are used containing respectively

148 and 176 brains. The sulci are automatically identified and

labelled by brainVISA. We observe that the PCBB algorithm

is stable over different datasets. The bagging procedure used

in the second part of the algorithm helps to achieve greater

stability.
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Fig. 3. The first row shows one dataset, the second row shows an-
other dataset, the third row shows the dataset composed by mixing
the data of the two datasets. The charts use the first two axes of
the PCA performed on the merged set. The first column shows the
salient points found by the first part of PCBB, using 100 bootstrap
samples. The second column shows the final cluster centres found by
the second part of PCBB.

4. DISCUSSION

The strong point of the PCBB algorithm is that it is very ro-

bust. Also it makes no assumption that the clusters span the

whole data space, as all the division-based clustering algo-

rithms do.

When we think about our problem of finding cortical fold-

ing patterns here, we are aware that the cortical folding pro-

cess is very complicated. It can be considered as a chaotic

phenomenon. The final global folding pattern of the brain is

the end product of numerous chemical and mechanical forces

very well orchestrated throughout the time of brain develop-

ment [12, 13, 14]. Here we are not trying to model the folding

process and explain all the variability we observe in folding

patterns. Instead we are trying to identify some typical pat-

terns that might exist in only a part of the population, but

are significant and can give us some insight into the folding

process and certain pathologies. So partial clustering is more

relevant for this particular problem.

If such patterns can be defined, we hypothesize that their

relative frequencies could be different in certain patient pop-

ulations, compare to the normal populations. Developmental

pathologies, indeed, could modify the dynamics of the fold-

ing process and favour some folding patterns over the others.

Consequently, the folding patterns could provide some signa-

tures useful for diagnosis.

As an ongoing work we are investigating other shape de-

scriptors for cortical folds. Possible improvements to the clus-

tering algorithm are investigated as well. Finally, we are look-

ing for ways to look for patterns without the knowledge of the

traditional nomenclature of the folds.
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[5] Z. Y. Sun, D. Riviè, F. Poupon, J. Régis, and J.-F. Man-

gin, “Automatic inference of sulcus patterns using 3d

moment invariants,” in MICCAI, Brisbane, LNCS-4792,
Springer-Verlag, 2007, pp. 515–522.

[6] D. Rivière, J.-F. Mangin, D. Papadopoulos-Orfanos, J.-

M. Martinez, V. Frouin, and J. Régis, “Automatic recog-

nition of cortical sulci of the human brain using a con-

gregation of neural networks,” Medical Image Analysis,

vol. 6, no. 2, pp. 77–92, 2002.

[7] L. Kaufman and P. J. Rousseuw, Finding groups in data,

Wiley series in probability and statistics, 1990.

[8] P. Good, Permutation, Parametric, and Bootstrap Tests
of Hypotheses, Springer Series in Statistics, 2004.

[9] S. Ray and B.G.Lindsay, “The topography of multivari-

ate normal mixtures,” Annals of Statistics, vol. 33, no.

5, pp. 2042–2065, 2005.

[10] C. Fraley and A.E.Raftery, “Model-based clustering,

discriminant analysis, and density estimation,” Jour-
nal of the American Statistical Association, vol. 97, pp.

611–631, 2002.

[11] C. Fraley and A.E.Raftery, “Mclust version 3 for r:

Normal mixture modeling and model-based clustering,”

Technical Report, no.504, Department of Statistics, Uni-
versity of Washington, 2006.

[12] D. C. Van Essen, “A tension-based theory of morpho-

genesis and compact wiring in the central nervous sys-

tem,” Nature, vol. 385, pp. 313–318, 1997.

[13] T. Fukuchi-Shimogori and E. Grove, “Neocortex pat-

terning by the secreted signaling molecule fgf8,” Sci-
ence, vol. 294, 2001.

[14] E. Monuki and K. Walsh, “Mechanisms of cerebral cor-

tical patterning in mice and humans,” Nature neuro-
science, vol. 4, 2001.

1632


